
The Experimental Uncertainty of Heterogeneous Public Ki Data
Christian Kramer,*,† Tuomo Kalliokoski,*,† Peter Gedeck, and Anna Vulpetti

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland

*S Supporting Information

ABSTRACT: The maximum achievable accuracy of in silico models
depends on the quality of the experimental data. Consequently,
experimental uncertainty defines a natural upper limit to the predictive
performance possible. Models that yield errors smaller than the
experimental uncertainty are necessarily overtrained. A reliable estimate
of the experimental uncertainty is therefore of high importance to all
originators and users of in silico models. The data deposited in ChEMBL
was analyzed for reproducibility, i.e., the experimental uncertainty of
independent measurements. Careful filtering of the data was required
because ChEMBL contains unit-transcription errors, undifferentiated
stereoisomers, and repeated citations of single measurements (90% of all pairs). The experimental uncertainty is estimated to yield a
mean error of 0.44 pKi units, a standard deviation of 0.54 pKi units, and a median error of 0.34 pKi units. The maximum possible
squared Pearson correlation coefficient (R2) on large data sets is estimated to be 0.81.

■ INTRODUCTION
Knowing the experimental uncertainty of the biological measure-
ments from which models are derived and validated is necessary in
order to judge the quality of in silico models.1 The experimental
uncertainty sets the upper limit of performance of in silico models
that can be achieved. Recent review papers on the state of molecular
modeling have pointed out that the experimental uncertainty in
public data is an important factor that needs to be assessed more
thoroughly.2,3 Although this is a simple fact, a systematic estimate on
measured experimental uncertainties in the context of in silico
models of biological data has never been published.
Biochemical studies often report a standard error of the

measurements. This error commonly expresses the repeatability,
i.e., the variability of the measurements obtained by one person
repeatedly measuring one system using the same experimental
setup. For judging models based on heterogeneous data sets, it is
important to know the variability of the measurements caused by
differences in operator behavior, lab conditions, or experimental
setup. This is defined as reproducibility. The International Union
of Pure and Applied Chemistry’s (IUPAC) definition of
reproducibility is: “The closeness of agreement between
independent results obtained with the same method on identical
test material but under different conditions.”4 Although data
published by different laboratories has usually not beenmeasured
by the same method on identical test material, in silico models
and large-scale SAR analyses rarely differentiate between the
sources of biological material and the experimental methods
used. In this context, “identical material” has to be interpreted as
“identical target protein” and “same method” as “method
yielding the same physical constant”.
From a mathematical point of view, reproducibility is the

variability of the average values obtained by several operators
while measuring the same item. For example, the median
standard deviation reported for the 343 measurements in the

CSARdock 2010 benchmark data is 0.05 pKi units (repeatability
error) and it can be as low as 0.001 pKi units.

5 Such precision is
typically not achieved when the assay is run in different
laboratories under different assay conditions or even by different
methods. In those cases, the standard deviation between
measurements is usually much larger. The variability in affinity-
based biosensor studies was recently explored in a global
benchmark: 150 participants from 20 countries were given the
same protein samples and asked to determine kinetic rate
constants for the selected protein−protein interaction case
study.6 The study yielded an average rate constant of 0.62 nM
with a standard deviation of 0.98 nM obtained by independent
investigators using various biosensor technologies. Because of
the experimental flexibility that was given to the participants, the
reported variability was larger than the variability obtained in
previous benchmark studies where participants were asked to run
the experiment on their own instruments while using a detailed
fixed protocol.7 In those cases, the variability observed in the
association and dissociation rate constants varied from less than
14% to ∼20% or ∼40% depending on the specific case study.8,9

In silico model generation and validation usually faces a trade-
off between small, highly comparable data sets and large,
heterogeneous data sets. Experiments are regarded as more
comparable if they have been carried out in the same laboratory
under the same conditions. Models and validations however get
better and more reliable with increasing data set size.10 For most
interesting biological targets, there are only small consistently
measured data sets available in the literature. Therefore, data
used for in silico models is usually heterogeneous (i.e., various
laboratories, assay conditions, assay methods) and reproduci-
bility is the relevant measure. Data from different assays can only
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be compared if it is reported as Ki or Kd data. IC50, EC50, percent
inhibition, etc. data is assay-specific and cannot be compared reliably.11

In recent years, a number of public databases have been set up
with the goal of collecting and making available all the biological
activity data published in the scientific literature and patents. The
most prominent among these databases are: PubChem,12

ChEMBL,13 Binding DB,14 PDBbind,15 and BindingMOAD.16

These databases have a substantial overlap because usually they
are derived from the same journals. For example, ChEMBL forms
a large subset of the activity data in BindingDB.17

The databases allow large-scale data analysis and build the
foundation of chemogenomics,18 novel scoring functions,19−21

and large-scale SAR analysis.22 However, it is also well-known
by the community that the data quality in the databases is
questionable. For example, some entries contain unclear
stereoisomer annotations, wrong structures, unrealistic values,
and wrongly assigned activity units that can cause significant
issues in modeling.17,23 In this contribution, the major pitfalls
that occur when extracting data from ChEMBL for multiple
measurements are highlighted and a number of filters for the
identification of a set of truly independent measurements are
proposed. An estimate for the worst and the best case of
experimental uncertainties of biological Ki data is calculated. By
extrapolation, this is suggested to be applicable to all those cases
in which multiple independent measurements are not available
and can be used as a reference value to compare actual pre-
dictions against.

■ DATA SOURCE
ChEMBL version 12 was downloaded from the European
Bioinformatics Institute’s FTP-site as a MySQL dump (Accessed
Dec 8, 2011) and imported into a local database server running
MySQL version 5.0.77. AllKi measurements were extracted from
the database into a text file. The lists of authors for the
publications were obtained using a Python script that linked the
bibliographical information available within ChEMBL to
PubMed. A similar script was developed to filter out review
papers from the data set by removing measured values from
publications that had the “Review” tag in PubMed. This script
also checked for retracted publications, which were not detected
in this case. See Supporting Information for the SQL query and
all scripts used.

■ DATA CURATION

The raw Ki measurements were filtered using a Python-script
(Figure 1). After each removal step, the target/compound
systems that only have one single measurement were discarded.
The filtering steps were the following:

(1) Measurements for a certain system of target and com-
pound were grouped together by their ChEMBL target/
compound identifier (ID) numbers. All singletons, i.e.,
systems with just one measurement, were removed. Measure-
ments with CHEMBL612545 as the target ID were removed,
because this is a dummy ID for unchecked targets.

(2) All measurements with unclear units or values were
removed. Only the measurements with one of the units
M, mM, μM, nM, pM, and fM were kept. Negative values
were removed. The activity values were converted from Ki

to pKi. Measured Ki values lower than 1 fM or higher than
10 mM were removed.

(3) If a target/compound system had several dif ferent activity
values in the same publication, only the highest pKi value
was taken into analysis to remove unclear stereoisomer
annotations and reports on experimental optimization.
The highest value was chosen because for stereoisomers
the highest pKi value should always correspond to the
same most active stereoisomer. Some publications report
assay optimization procedures, while others only report
the highest activity measured. For assay optimizations, it
makes sense to only include the highest activity.

(4) To exclude citations of previously published values, all
measurements with identical reported values in different
publications for the same system were removed. Values
with exactly 3 or 6 pKi unit difference were also removed to
exclude citations of previously published values with unit-
transcription error.
To exclude rounded citations of previously published

values, the lowest pKi values with a difference smaller than
0.02 pKi units were removed. Upon inspection of the
original literature, all randomly drawn cases from this
group could be traced back to citations of previously
reported values (see the Supporting Information for the
lists of all randomly drawn samples).

Figure 1. The data curation process. System is a specific protein−ligand complex.
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(5) The list of authors from the publications was used to
identify independent pairs of measurements from different
laboratories. No overlap between the authors of two
papers was allowed. This may unintentionally have
removed some truly independent measurements due to
researchers having identical names.

■ DATA ANALYSIS AND MEASURES OF QUALITY
The standard deviation of the measurements (σE), the mean
unsigned error (MUE), and the median unsigned error (MedUE)
for all pairs of measurements were used to assess the quality of
the agreement between multiple measured values for the same
target/compound system. For most systems, there are two or
three independently measured values available. The distribution
of published values per system is shown in Figure 2.

Measures of Quality from Differences between
Published Values. With two or three samples only, the
estimates for the average activities of individual protein−ligand
systems are unreliable and therefore the standard equations for
calculating the standard deviation (σE), the mean unsigned error
(MUE), and the median unsigned error (MedUE) cannot be used
because the total variability would be underestimated. Assuming
that the experimental uncertainty (σE = reproducibility) is
normally distributed and the same on all Ki measurements, the
differences between published values can be used to calculate the
standard measures of quality and the calculation of averages can
be avoided. It can be shown that σE, MUE, andMedUE of the data
can be calculated from the corresponding values of the
differences by division through √2. The proof is given in the
Appendix.
The overall equations for calculating σE, MUE, and MedUE

from n differences between pairs of published values (ypub,i,1 and
ypub,i,2 stand for the two measured values within a given pair i)
then become
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If more than two measurements are available for a given
ligand−protein system, all possible pairs are generated for
calculating the measures of quality. Another frequently used
measure of quality is the squared Pearson’s correlation coefficient
(R2

Pearson). If it is calculated on the pairs of measurements, it is a
measure of the performance that can be achieved by an in silico
model that has the same experimental uncertainty as the
measurements. The order of ypub,i,1 and ypub,i,2 has to be scrambled
in order to not bias the R2

Pearson calculation. Using the same
notation as above for the pairs of measurements, the equation for
R2
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Pearson Achievable. To judge the quality of in

silico models, it is important to know the maximum performance
observable. For all biochemical pKi data sets, be it congeneric
series of ligands measured in different laboratories or ligands with
varying scaffolds on different proteins as used for the evaluation
of scoring functions, the maximum R2

Pearson,MAX that a perfect in
silico model could have depends on the standard deviation of the
total set of measured values and the standard deviation of the
experimental uncertainty. Because published values always
contain an experimental uncertainty, the maximum R2

Pearson,MAX
observable with perfect predictions is lower than one. The
equation for calculating R2

Pearson, MAX for a known experimental
uncertainty with standard deviation σE and a given data set with
an overall distribution with σ(Ypub) is
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The derivation of this equation can be found in the Appendix.
All data analysis was done in R version 2.14.24 The R script

used is included in the Supporting Information.

■ RESULTS
Overall there were 261,746 different systems with 323,520
measured Ki values stored in ChEMBL12. Of these, 27,121 had
multiple measurements assigned. The data curation procedure
outlined above reduced the initial set to 2540 target/ligand
systems with 7667 measurements, yielding 11,621 pairs of
measurements. The data curation steps 1−4 removed more than
85% of the overall database. Another 6% of the data was removed
in order ensure independence of measurements by eliminating
overlap in the publications author lists (step 5).
Most pseudo multiple measurements were removed when

only the most active out of multiple values per publication was
selected (step 3). Inspection of randomly picked samples out of

Figure 2. Published values per system. The most frequently measured
system is Rimonabant (CHEMBL111) on the cannabinoid receptor 1
(CHEMBL218) with 23 independent measurements, followed by
haloperidol (CHEMBL54) on the dopamine D2 receptor
(CHEMBL339) with 22 measurements.
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this group showed that in addition to simple typing errors, there
were two major reasons why two or more Ki values for the same
compound/target pair and the same publication could be found
in ChEMBL. One reason was that the stereoisomers had not
been properly assigned, producing three values reported for the
two stereoisomers and the racemate (Figure 3a). The other
common reason was that different assays were used or activities
for different assay conditions were reported (Figure 3b). It is
impossible to differentiate between such cases without manual
inspection of the original literature. Nevertheless, as the
measurements are reported in the same publication, it was
assumed that these experiments were carried out in the same
laboratory. The most active value was selected in order to select
the most relevant (in case of assay optimization) value for the
same compound (in case of undifferentiated stereoisomers), and
the other values were excluded from the current analysis, as the
aim of the study is reproducibility assessment of independent
measurements. If all activities from publications with multiple
values for one ligand−protein system were discarded, the overall
results only changed by 0.01 or 0.02 units (details not shown).
In curation step 4, all pairs where a previously published value

was cited were removed. In all cases of randomly picked samples
from the group with identical values in different publications, in
manual inspection it turned out that the later publication cited
the value from the earlier one (Figure 3c). In 18 out of 20 cases of
randomly picked samples where the two reported values were
very close, it turned out that the later study cited the earlier one
and the previously measured value was rounded (Figure 3d).
Rounding differences can maximally yield a difference of 0.17 pKi

units (compare 1 nM→ pKi = 9 and 1.49 nM→ pKi = 8.83), so as
a conservative filter for rounding errors a difference of 0.02 pKi

units was used for data extraction. For the analysis of measures of
agreement, a threshold of 0.05 pKi units was used. In all cases of
randomly picked samples where the difference between activities
was exactly 3 or 6 pKi units, one paper was citing from the other
and there was a unit transcription error in ChEMBL. In the end, a
set of 7667 independent measurements for 2540 protein−ligand
systems was identified (curated data set 1).

The distribution of the activities of the curated data set 1 is
shown in Figure 4. It is slightly skewed to the left, indicating that

pKi values of highly active compounds tended to be published
more often. This makes sense, given that the purpose of most
medicinal chemistry programs is to generate highly active
compounds.
Inspection of 10 pairs with disagreements of ∼3 pKi units

showed that 8 out of 10 pairs still had unit transcription errors.
Therefore, a threshold of 2.5 pKi units was set as maximum
tolerable agreement between different measurements. Unit
transcription errors of independently measured values that are
detrimental to the comparison always cause disagreements of at
least 1.5 pKi units. So the threshold of 2.5 pKi units was
implemented as a better compromise between reducing unit
transcription errors and keeping pairs of really independent
measurements. A new curated data set without strong disagree-
ments, from now on defined as curated data set 2, was generated
by removing 404 pairs with disagreements >2.5 pKi units. A plot
of the pairs of compared ChEMBL pKi values is shown in Figure
5. The two lines in the plot indicate the 2.5 log unit border for
removing unreliable pairs of measurement.
The distribution of differences between pairs of measured

values (ΔpKi = |yi,1 − yi,2| with ΔpKi < 2.5) versus the activity

Figure 3. Examples of common issues in ChEMBL when selecting multiple measurements for a target/compound pair.

Figure 4. Distribution of ChEMBL activities after database curation.
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distribution is shown in Figure 6. One might assume that highly
active compounds would get more reproducible measurements

due to higher accuracy, as the complete Ki titration profile might
be easier to determine. However, the data did not show a
difference in reproducibility (calculated as ΔpKi between each
pairs) between high affinity and low affinity complexes, as shown
in Figure 6.
To see if the physicochemical properties of ligands have an

influence on reproducibility, standard chemoinformatics de-
scriptors were calculated using an in-house tool. The distribution
of differences between pairs of measured values (ΔpKi = |yi,1 −
yi,2| with ΔpKi < 2.5) versus lipophilicity (ClogP), polar surface
area (PSA), and the number of heavy atoms (nof_Atoms) for the
samples where a SMILES string for the ligand was available in
ChEMBL12 (11,550 pairs) is shown in Figure 7. The plots
indicate that the differences between assay results become larger
with very high or very low ClogP, a large polar surface area, and
larger bigger ligands. However, there are only few examples
for these more extreme molecules, and for the property range
of standard drug molecules (0 < ClogP < 5, PSA < 250, nof_
atoms < 45), there is no clear visible trend observable. Also, the
few molecules with high PSA, high nof_Atoms, and very low
ClogP coincide.
The statistical parameters calculated to explore the exper-

imental uncertainty obtained from pairs of measured independ-

ent activity data generated in the two curated ChEMBL data sets
are reported in Table 1. The threshold of ΔpKi < 2.5 units
introduced in step 4 for the curated data set 2 did probably lead to
a slight bias toward less disagreement, since a number of really
independent pairs of measurements with differences between 2.5
and 3 pKi units were also removed. As a consequence, the σE
value for the curated ChEMBL data set 2 is slightly over-
optimistic because the tail of the distribution has been cut off and
thereby all compounds strongly influencing this estimate have
been removed. For this case, a more robust measure like the
MedUE makes more sense. The R2

Pearson, MAX achievable for
perfect predictions has been calculated to be 0.74 for the curated
data set 1 and 0.81 for the refined curated data set 2.
The whole analysis is based on the assumption that

experimental uncertainty is the same for every published value,
i.e., the random error of each measurement is drawn from the
same normal distribution, irrespective of the ligand chemistry
and the protein target type. If the individual errors are drawn
from a normal distribution, the differences between two errors
are also normally distributed because adding two normal
distributions yields another normal distribution. Therefore, if
the differences are not normally distributed, the assumption of all
experiments having the same experimental error is not true. This
can be tested by fitting a Gaussian to the distribution of
differences. The distribution of the calculated ΔpKi does not fit
exactly a Gaussian distribution as the calculated ΔpKi between
1.0 and 2.5 pKi units were always underestimated by a single
fitted Gaussian. The overall distribution could be accurately fitted
by using the sum of two Gaussian functions (Figure 8). This
result indicates that the assumption of every published value
having the same experimental uncertainty is reasonable.

■ DISCUSSION
In this contribution, an estimate of the experimental uncertainty
of Ki variability was derived from compounds with multiple
activity values reported in ChEMBL. Much care was put into
the data extraction from ChEMBL to yield data which is
independently measured and free from transcription errors
added during the insertion of the data into the database. After this
curation process, a mean unsigned error MUE = 0.44 pKi units
(corresponding to a factor of 2.8 in Ki), a standard deviation σE =
0.56 pKi units, and a median error MedUE = 0.34 pKi units
(corresponding to a factor of 2.2) were derived as error estimates
for individual published Ki values. These values set the maximum
performance achievable by any in silico models using the same
data set or by extrapolation using any public Ki data from
different laboratories. If the whole ChEMBL data set was used
without restriction to the measurement pairs with ΔpKi < 2.5,
slightly worse values were observed: MedUE = 0.34, MUE = 0.48,
and σE = 0.69. The achievable R2

Pearson depends on the range of
the activities. If the data set used in modeling is global, normally
distributed, and contains the full range of measured values from 3
to 14 pKi, such as the PDBbind

10 or the CSARdock benchmark
data set,4 the maximum performance of a model with the same
uncertainty as the experimental uncertainty can be R2

Pearson,MAX =
0.66. The maximum performance of a perfect model can be
R2

Pearson,MAX = 0.81. It cannot be 1.00 because biological
experiments always contain artifacts from both the measurement
and the sample preparation protocol.
The observed experimental uncertainty is low compared to the

usually observed uncertainty of in silico models. However, it
must be clarified that the examined data was not high-throughput
data and that most of the published values were averages of

Figure 5. Plot of all pairs of measured values (curated dataset 1). Lines
indicate the 2.5 log unit border for removing unreliable pairs of
measurement (leaving curated dataset 2).

Figure 6. Distribution of differences between pairs of measurements,
depending on the average activity. Mean indicated by black bar, boxes
indicate 25% and 75% range, whiskers at 1.5 * interquartile range or
strongest outlier if the distance to the median is smaller. Circles
represent individual outliers larger than the upper whisker.
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multiple runs of the same experiment. So the variability found
most probably is the interlaboratory factor, the difference

between repeatability (which is usually published with each
individual value) and reproducibility. In addition, it has to be
kept in mind that the data set examined consisted of double
measurements allowing to spot and remove strong disagree-
ments, mostly due to unit-transcription errors.
Care must be taken when drawing conclusions on experimental

variability by usingmultiplemeasurements from the originalChEMBL
and probably from all other huge public data collections as well. More
than 90% of the pairs of measurements that have initially been
extracted were not independent because individual values were simply
derived from citations of previously published data; refer to different
stereoisomers/racemates or to different assays or stages of assay
optimization. ChEMBL also contained a large set of compounds with
unchecked biological targets that nevertheless popped up in searches

Figure 7.Distribution of differences between pairs of measurements, depending on ClogP, PSA, and the number of heavy atoms (values rounded to the
corresponding values given on the X-axis). Mean indicated by black bar, boxes indicate 25% and 75% range, whiskers at 1.5 * interquartile range or
strongest outlier if the distance to the median is smaller. Circles represent outliers larger than the upper whisker. Numbers above the plot indicate the
number of pairs per bin.

Table 1. Summary of Statistical Numbers for the Experimental
Uncertainty of Public pKi Data

a

statistics curated data set 1 curated data set 2

MUE [pKi] 0.48 0.44
MedUE [pKi] 0.34 0.34
σE [pKi] 0.69 0.56
R2

Pearson 0.54 0.66
R2

Pearson, MAX 0.74 0.82
aCurated dataset 2 is obtained by removing all pairs with ΔpKi > 2.5
from curated dataset 1.
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(TargetID = CHEMBL612545). Nearly all pairs of measurements
with a ΔpKi greater than 3 pKi units contained a unit transcription
error, meaning that the actual agreement was much better than it
seemed. To automatically identify a set of completely independent
measurements from the original ChEMBL, the authors lists from the
publications were taken into account and pairs of measurements with
overlapping authors were removed.
The statistical values derived should be very reliable estimates

because they are based on 7667 individual measurements,
yielding 11,621 pairs of measurements. Although it was
impossible to check all individual pairs of measurements, it can
be assumed that the data remaining after the curation was clean
enough to obtain a realistic estimate of the experimental
uncertainty. All strong outliers with ΔpKi > 2.5 and all not
independently reported values with ΔpKi < 0.05 were removed
from the analysis. The thresholds used in step 4 can be defined
differently; however, these subjective threshold definitions do
not affect the overall results of this study. For example, varying
the thresholds of step 4 between 0.02 <ΔpKi < 2.5 to 0.1 <ΔpKi
< 3.5 changes the MedUE from 0.33 to 0.39, the MUE from 0.42
to 0.51, and σE from 0.55 to 0.67. The magnitudes of the
differences in variation are to be expected because MedUE is the
most robust and σE the least robust measure of the three. The bias
of wrongly removing some very well-agreeing measurements and
some strongly disagreeing measurements were assumed to be
averaged out in the end. In randomly picked samples from the
final curated data set 2, only rare unsystematic errors in
compound and value assignments were found.
Finally, there might be some confirmation bias in the data

leading to underestimation of the experimental uncertainty. If
there is previous data on the same protein−ligand system
available, experimentalists might tune their assay until the
measured value comes close to the previously published value.
The authors hope that this was not a big issue in the data, but they
can neither guarantee for the absence nor exclude this bias. It is
difficult to correct for this issue because it is not evident from the
publication date whether or not a previously measured value was
known to the experimentalist. From a strict point of view, the
most accurate quantification of experimental uncertainties can
only be obtained from double-blind measurements carried out in
independent laboratories, as reported in refs 6−9. However,
these extensive and interesting analyses have been performed on
a very limited set of protein−ligand or protein−protein cases.
Until a sufficiently large set of controlled independently
measured pKi values is available, the estimate obtained using
the approach described here can be helpful to line a realistic

estimate of experimental uncertainty in the public Ki data most
commonly used by the modeling community.

■ CONCLUSIONS
The experimental uncertainty in Ki measurements for heteroge-
neous public data was estimated to be between a MUE of 0.44 and
0.48 pKi units. This value is very important because it sets the upper
limit of performance for all in silico binding affinity prediction
models, be it QSAR, scoring, orMM-GBSA. If the average error of a
model based on heterogeneous public data is less than 0.44 pKi units,
it is very likely that a model is overtrained.
The analysis presented further shows that more than 90% of

the pairs measurements extracted from ChEMBL actually were not
independent measurements. Eighty-five percent of the individual
data had to be excluded, mainly because they were either citations of
previously published data, unclear assigned stereoisomers, or they
contained some unit transcription error. Another 6% had to be
excluded because theywere notmeasured completely independently
as determined by the overlap in the authors of the corresponding
publications. Therefore, a careful curation process was developed
that reduces the redundancy and improves the quality of the publicly
available data sets before any type of analysis.

■ APPENDIX
Measures of Quality from Differences between Published
Values
Each published value ypub is composed of the true value ytrue and
some random error ε.

ε= +y ypub true (1)

The difference between two independently measured and
published values that have been obtained for the same biological
system then becomes

ε ε ε ε− = + − + = −y y y y( ) ( )pub,1 pub,2 true 1 true 2 1 2 (2)

Because the overall variances for the differences of any two
vectors Y1 and Y2 add up according to

− = + −Y Y Y Y Y Yvar( ) var( ) var( ) 2cov( , )1 2 1 2 1 2 (3)

and the covariance between two vectors of random errors
(E1,E2) is zero: cov(E1,E2) = 0, the standard deviation of the
differences of the measurements becomes
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E E E E
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Because the standard deviation of E1 and E2 is the same
(σ(E1) = σ(E2) = σE), the standard deviation of the pairs of
differences then becomes

σ σ σ σ− = + =E E E E( 1 2) ( 1) ( 2) 22 2
E (5)

Therefore, the standard deviation or experimental uncertainty
of pKi measurements can be calculated from the standard
deviation of the differences by dividing by √2.
For normally distributed errors, the MUE and MedUE are

proportional to the standard deviation

σ ≈ ≈MUE M UEE ed (6)

Therefore, the MUE and the MedUE can also be derived from
the MUE and the MedUE of the differences by dividing by √2.

Figure 8.TwoGaussian functions (Dark gray: σ = 1.3264, weight = 0.35.
Light gray: σ = 0.5359, weight = 0.66. Black: sum.) fitted to distribution
of measurement differences (black dots) of the curated ChEMBL data.
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The overall equations for calculating σE, MUE, and MedUE from
the differences between n pairs of published values then become
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with cov(Y1,Y2) being the covariance of any two vectors Y1 and Y2
of corresponding values and σ(Y1) and σ(Y2) being the standard
deviations of the two vectors. Given that all published values
Ypub are composed of the true value Ytrue plus some experimental
uncertainty E

= +Y Y Epub true (11)

the equation for the maximum achievable R2
Pearson,MAX becomes
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Because the covariance of a sum of normally distributed
vectors can be split up according to

+ = +Y Y E Y Y Y Ecov( , ) cov( , ) cov( , )true true true true true
(13)

the covariance between a set of random errors E and true values
Ytrue is zero

=Y Ecov( , ) 0true (14)

the covariance between a vector and itself is the same as its
variance or the squared standard deviation

σ= =Y Y Y Ycov( , ) var( ) ( )true true true true
2

(15)

and the standard deviation of the true values depends on the
published values and the experimental uncertainty according to
(which can be derived from rearranging the variances of the
vectors in (11))

σ σ σ= −( )Y Y( )true pub
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the equation for the maximum achievable R2
pearson, MAX can be

rewritten as
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(using 13)

σ σ
=

*

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

Y Y

Y Y

cov( , )

( )
true true

true pub

2

(using 14)

σ

σ σ
=

*

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

Y

Y Y

( )

( )
true

2

true pub

2

(using 15)

σ

σ

σ σ

σ
= =

−

( )
( )

( )
Y

Y

Y

Y

( )true
2

pub
2

pub
2

E
2

pub
2

(using 16)

σ

σ
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )Y

1 E

pub

2

(17)

■ ASSOCIATED CONTENT
*S Supporting Information
Supporting Information available: AMySQL statement to extract
all data necessary from ChEMBL12 for the analysis described, a
Python script to filter the CHEMBLmultiple measurement data,
the final data set prepared, an R script to analyze the double
measurements, and comparisons of randomly drawn samples
from various subgroups. This material is available free of charge
via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*For C.K.: phone, +41 61 69 67939; E-mail, Christian.Kramer@
novartis.com. For T.K.: phone, +41 61 69 66049; E-mail, Tuomo.
Kalliokoski@novartis.com.
Author Contributions
†Equal contribution
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
C.K. and T.K. thank the Novartis Institutes for BioMedical
Research for Presidential PostDoc Fellowships.

■ ABBREVIATIONS USED
cov, covariance; FTP, file transfer protocol; ID, identifier;
IUPAC, International Union of Pure and Applied Chemistry;
MedUE, median unsigned error; MM-GBSA, molecular
mechanics Poisson−Boltzmann surface area; MUE, mean
unsigned error; nof_Atoms, number of heavy atoms; PSA,
polar surface area; QSAR, quantitative structure−activity
relationship; SAR, structure−activity relationship; SMILES,
simplified molecular input line entry specification; var, variance;
σE, standard deviation of the measurements; R2

pearson,MAX,
maximum achievable R2

pearson with a given σE

■ REFERENCES
(1) Green, D. V. S.; Leach, A. R.; Head, M. S. Computer-aided
molecular design under the SWOTlight. J. Comput.-Aided Mol. Des.
2012, 26, 51−56.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm300131x | J. Med. Chem. 2012, 55, 5165−51735172

http://pubs.acs.org
mailto:Christian.Kramer@novartis.com
mailto:Christian.Kramer@novartis.com
mailto:Tuomo.Kalliokoski@novartis.com
mailto:Tuomo.Kalliokoski@novartis.com


(2) Martin, E.; Ertl, P.; Hunt, P.; Duca, J.; Lewis, R. Gazing into the
crystal ball: the future of computer-aided drug design. J. Comput.-Aided
Mol. Des. 2012, 26, 77−79.
(3) Stouch, T. R. The errors of our ways: taking account of error in
computer-aided drug design to build confidence intervals for our next 25
years. J. Comput.-Aided Mol. Des. 2012, 26, 125−134.
(4) IUPAC. Compendium of Chemical Terminology (The “Gold Book”),
2nd ed; McNaught, A. D., Wilkinson, A., compilers; Blackwell Scientific
Publications: Oxford, UK, 1997; XML on-line corrected version http://
goldbook.iupac.org, 2006 created by M. Nic, J. Jirat, B. Kosata; updates
compiled by A. Jenkins; ISBN 0-9678550-9-8, DOI: 10.1351/goldbook.
(5) Community Structural−Activity Resources (CSAR); http://www.
csardock.org (accessed December 14, 2011).
(6) Rich, R. L.; Papalia, G. A.; Flynn, P. J.; Furneisen, J.; Quinn, J.;
Klein, J. S.; Katsamba, P. S.; Waddell, M. B.; Scott, M.; Thompson, J.;
Berlier, J.; Corry, S.; Baltzinger, M.; Zeder-Lutz, G.; Schoenemann, A.;
Clabbers, A.; Wieckowski, S.; Murphy, M. M.; Page, P.; Ryan, T. E.;
Duffner, J.; Ganguly, T.; Corbin, J.; Gautam, S.; Anderluh, G.; Bavdek,
A.; Reichmann, D.; Yadav, S. P.; Hommema, E.; Pol, E.; Drake, A.;
Klakamp, S.; Chapman, T.; Kernaghan, D.; Miller, K.; Schuman, J.;
Lindquist, K.; Herlihy, K.; Murphy, M. B.; Bohnsack, R.; Andrien, B.;
Brandani, P.; Terwey, D.; Millican, R.; Darling, R. J.; Wang, L.; Carter,
Q.; Dotzlaf, J.; Lopez-Sagaseta, J.; Campbell, I.; Torreri, P.; Hoos, S.;
England, P.; Liu, Y.; Abdiche, Y.; Malashock, D.; Pinkerton, A.; Wong,
M.; Lafer, E.; Hinck, C.; Thompson, K.; Primo, C. D.; Joyce, A.; Brooks,
J.; Torta, F.; Bagge Hagel, A. B.; Krarup, J.; Pass, J.; Ferreira, M.; Shikov,
S.; Mikolajczyk, M.; Abe, Y.; Barbato, G.; Giannetti, A. M.;
Krishnamoorthy, G.; Beusink, B.; Satpaev, D.; Tsang, T.; Fang, E.;
Partridge, J.; Brohawn, S.; Horn, J.; Pritsch, O.; Obal, G.; Nilapwar, S.;
Busby, B.; Gutierrez-Sanchez, G.; Gupta, R. D.; Canepa, S.; Witte, K.;
Nikolovska-Coleska, Z.; Cho, Y. H.; D’Agata, R.; Schlick, K.; Calvert, R.;
Munoz, E. M.; Hernaiz, M. J.; Bravman, T.; Dines, M.; Yang, M. H. A
global benchmark study using affinity-based biosensors. Anal. Biochem.
2009, 386, 194−216.
(7) Cannon, M. J.; Papalia, G. A.; Navratilova, I.; Fisher, R. J.; Roberts,
L. R.; Worthy, K. M.; Stephen, A. G.; Marchesini, G. R.; Collins, E. J.;
Casper, D.; Qiu, H.; Satpaev, D.; Liparoto, S. F.; Rice, D. A.; Gorshkova,
I. I.; Darling, R. J.; Bennett, D. B.; Sekar, M.; Hommema, E.; Liang, A.
M.; Day, E. S.; Inman, J.; Karlicek, S. M.; Ullrich, S. J.; Hodges, D.; Chu,
T.; Sullivan, E.; Simpson, J.; Rafique, A.; Luginbühl, B.; Westin, S. N.;
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